Freescale Semiconductor Document Number:AN4553
Application Note Rev. 0, 7/2012

Using Open Source Debugging
Tools for Linux on i.MX
Processors

Contents

1 I ntrod u ctio n 1 INtrOAUCHON. ...t

The aim of this document is to introduce a Linux software 2 General Debug Models and Mapping on

integrator i.MX platform to quick debug and diagnosis
methods. It presents Linux generic concepts that can be easily 3 Requirements
and practically extrapolated from the concrete i.MX 6
examples to all i.MX products. The document is not intended
to be exhaustive. Instead, the purpose of the document is to
help with a fast setup of the appropriate debug tools. You will 5 First Steps for Using GDB for Linux
find that, even though other tools are also mentioned, most of User-Space Debug
the content involves the GNU Project Debugger (GDB)
(building it, connecting to a debug server, debugging user
space applications and the kernel, and using Eclipse as front
end). This document does not discuss profiling. 7 Using ECLIPSE Front End for Linux

User-Space Debug........ccceeeeiienienienieieeeceeee

4 Building the Latest GDB for i. MX
Processors.......coouuiiiiiiee e

6 Other Runtime Analysis Tools for

8 First Steps for Using KGDB for Linux
Kernel Debug........cccvvieiieiiiieieeeieceee e
2 General Debug MOdeIS and 9 Using ECLIPSE Front End for Linux

Mapping on GDB Kernel Debug........c.cooeiiiiiiiiiieeiieee e

In a host - target development model, where the host is 10 ConClUSIONS. ...ccuveiiiieiieieniieieicicee e
usually a PC holding most of the software development tools

and source code, and the target is the hardware or simulator

for which the software is being developed, we can identify two

debugging models:

* cross debugging - the analogue of the cross building of
the application. When the target runs the debugged
application under the control of a native debug agent

2/

Z“freescale

© 2012 Freescale Semiconductor, Inc.

General Business Information

rnequirements

and the host runs the heavy cross debugger that is aware of target architecture and does the symbols parsing, source
mapping and variables work and communicate with the target using a protocol, usually over serial or Ethernet physical
connections. Some of the advantages of this model are that the source code is not required on target, the debugged
application can be stripped out of symbols when the target has limited amount of storage space, the native agent adds
minimal overhead, and the debug session can be integrated in a visual front end. It is suitable for intensive debugging
of large amount of code. When a special debug agent is available, the method can be also used without operating
system running on target. The terminology mapping on GDB is simple: native agent = gdbserver, cross debugger = gdb

* native debugging - all in one solution, when the actions described above (debug information parsing, user interface and
run control) are performed directly on target. The advantages are that there is no need for an additional connection with
a host or for a cross debugger. Also, this is usually a more stable solution but it needs an operating system on target.
The target must be powerful enough to run both debugging and the debugged application. This method is especially
suitable for quick debugging of small problems and fast diagnosing. It can be eventually used without sources or debug
information, for example to attach to a running process that is blocked in a deadlock and to inspect each thread's call
stack. The terminology mapping on GDB: native agent = cross debugger = gdb (one single instance).

3 Requirements

This chapter will briefly introduce several common constraints of a debug environment. First, both the cross debugger and
the debug agent should be aware of the target architecture, in our case, ARM. This means that the cross debugger should
mainly be capable of understanding the target ABI and to disassemble the target code, while the debug agent should be able
to perform run control functions (e.g. use of ptrace in Linux).

To enable source code debugging, the most important requirements are:

¢ The application should be built with debug information, usually by providing some flags to compiler and assembler.
For the GNU toolchain, these are:

gcc: -g / -ggdb / -gdwarf-2
as: -g / -gdwarf-2 or -gdwarf2

It is recommended to build the targeted application code as little optimized as possible (e.g. gcc -O0). This will enable
stepping coherent with the source code. You will find that some applications, like the Linux kernel, are written in such
a manner that they cannot by compiled with zero optimizations. In that case, the disadvantage is that stepping into
source code is not always very accurate and you may want to switch to assembly stepping or using breakpoints.

* And lastly, the availability of the source code (only on the machine that runs the debugger user interface).

Another requirement is that the application must not interfere with the debugger (run control) mechanisms such as hardware
registers and events that should not be modified or caught by the application. In the Linux application world, there is little
risk of breaking the agent capabilities. You should pay special attention, however, while debugging in supervisor mode (e.g.
a kernel).

To correctly catch process events like loading a shared library or creation of a thread, the shared libraries that implement
these common functionalities must be deployed on target un-stripped of symbols. For Linux userspace those are /d.so,
libthread-db.so, libpthread.so, and for the particular case of i.MX/LTIB, to achieve that uncheck strip options on LTIB
Target Image Generation menu.

4 Building the Latest GDB for i.MX Processors

Since GDB is an evolving project and the board support package may not always provide the newest GDB, it is usually a
good idea to find the latest stable sources and to build the tool with the toolchain from BSP and for the particular target that it
will execute on.

Using Open Source Debugging Tools for Linux on i.MX Processors, Rev. 0, 7/2012

2 Freescale Semiconductor, Inc.
General Business Information

g |

4
First Steps for Using GDB for Linux User-Space Debug

This section outlines the steps that should be performed for building both cross and native GDB in a LTIB based
environment, including the full command listing. It will become apparent that there is nothing inately specific to LTIB so the
concepts can be applied to any build system and easily adapted to other targeted architecture. Should you need only the
native debugger, skip steps 4 and 5. Otherwise, perform all steps as shown below:

1. Download the tarball, take the latest version (now 7.4) from http://ftp.gnu.org/gnu/gdb and uncompress it in a folder
where will be performed the following steps scope="external" format="html"/>
2. Have cross gcc in PATH

$ export PATH=$PATH:/opt/freescale/usr/local/gcc-4.4.4-glibc-2.11.1-multilib-1.0/arm-
fsl-linux-gnueabi/bin/

3. Set the target

$ export TARGET=arm-fsl-linux-gnueabi
4. Build cross version
* Configure --target=$TARGET --prefix=<install destination>
¢ Build
¢ Install

$./configure --target=$TARGET --prefix=/usr/local/gdb-7.4-arm-fsl-linux-gnueabi
S make
$ sudo make install

5. Clean the build folder

$ make distclean
$ find . -name config.cache|xargs rm

* or better remove the entire source folder and uncompress the tarball again
6. Build native version (including gdbserver)
* Select target architecture and runtime (CFLAGS)
* If missing, copy libtermcap in cross gcc runtime folder (one time operation per runtime)
¢ Configure --build=$MACHTYPE --host=$TARGET --prefix=<install destination>
* Build
* Install

$ export CFLAGS="-march=armv7-a -mfpu=neon -mfloat-abi=softfp"

$ sudo cp <rootfs>/usr/lib/libtermcap.* /opt/freescale/usr/local/gcc-4.4.4-
glibc-2.11.1-multilib-1.0/arm-£fsl-linux-gnueabi/arm-£fsl-linux-gnueabi/multi-libs/
armv7-a/neon/lib

$./configure --build=$SMACHTYPE --host=$TARGET --prefix=<rootfs>/usr/local/gdb7.4
$ make

$ sudo chmod a+w <rootfss>/usr/local/

$ make install

Note: MACHTYPE is an environment variable that is usually present on a Linux host system (e.g. 1686-pc-linux-gnu). When
it's missing, set it accordingly.

5 First Steps for Using GDB for Linux User-Space Debug

5.1 Cross Mode

As described in Building the Latest GDB for i.MX Processors, the cross mode requires an agent running on target, gdbserver
(step 6), and a cross debugger running on host (step 4). Steps 4 and 6 should have been completed as specified in the previous
section. The supported connections are over a serial port or TCP. Choose the most suitable connection for your environment.

Using Open Source Debugging Tools for Linux on i.MX Processors, Rev. 0, 7/2012

Freescale Semiconductor, Inc. 3
General Business Information

uvuier Runtime Analysis Tools for Linux

Keep in mind that the latter is usually a faster connection. Read the gdbserver command manual which will help you to see
all parameter signification and will help you to start debugging an application or attach to an already running process. Then,
start the cross GDB on host and connect with the agent. Perform the steps as shown in the example below:

Run the agent on target:
$ gdbserver :<port> <my app to_ debug>

Run the debugger on host:
$ my built cross_gdb

In GDB, use commands like:

file <my app to debug> - to specify the debugged file

set sysroot <target root fs> - for library discovery

(set solib-search-path and solib-absolute-prefix <target root fs>/lib - for gdb-6.6)
target remote <target-IP>:<port> - connect with the agent

5.2 Native Mode

Both debugger and application run on target. To perform source level debugging, the source code should be made available
by copying on the target root filesystem or, preferably, by using a (shared) NFS folder. You may chose to start the target
Linux using the NFS root filesystem, or you can mount the NFS folder later with the source code. Since the debugged
application is built on a host (using a cross compiler), the debug information will contain the full path of sources on host
which may be different from the sources path on target. If the sources are not available at debug, you will need to perform
path mapping as exemplified below.

Run debugger on target. If GDB does not start properly, refer to Other Runtime Analysis Tools for Linux.

$ gdb <myapp>

Use GDB command "set substitute-path <build-path> <actual-path>" for path mapping

5.3 First GDB Commands

Use GDB commands as in the following example and learn the highlighted shortcuts:

break <symbol>

break <file>:<line>

continue/run (note the differences!)
next

list

info thread

thread <id>

backtrace

frame

6 Other Runtime Analysis Tools for Linux

Sometimes setting up a heavy debug infrastructure is not necessary for quickly identifying the root cause of certain problems.
For example, in a "Segmentation fault" situation, first use a system or library call tracing the tool directly on target. The
above built native gdb crashes at run. Execute it under strace and you will find that one of the latest syscalls was the attempt
at opening a missing file. To solve this problem, create the empty file. For this kind of tools, check <fsl-arm-toolchain>/ /

Using Open Source Debugging Tools for Linux on i.MX Processors, Rev. 0, 7/2012

4 Freescale Semiconductor, Inc.
General Business Information

Using ECLIPSE Front End for Linux User-Space Debug

debug-root/usr/bin folder for pre-built target tools or build them from tarballs. First check the BSP build system that you use
since some tools are already available and should only be selected, like strace in LTIB. Eventually, copy those tools on the
target root filesystem in usr/bin folder.

strace, strace-graph

ltrace

duma (Detect Unintended Memory Access)
dmalloc

7 Using ECLIPSE Front End for Linux User-Space Debug

When doing intensive debugging, especially of a multithreaded application, the command line interface may prove
cumbersome. In this case, the user needs to inspect threads stacks, variable values per each thread frame, registers,
disassembly, to build own expressions that the tool evaluates or to change memory, variables, and registers values. A graphic
front end makes those easier. This section shows how to quickly start using one of the most modern and flexible IDE:s,
Integrated Development Environments, in which the community, including Freescale and other major players in the
embedded applications space, is continuously contributing both for IDE and C/C++ development components. Follow the
next steps to install and setup this development tool to work with the previously built GDB:

1. The GUI is java based, so first install JRE (> 1.5) and add it in the PATH. Download it from the following link:
http://www.oracle.com/technetwork/java/javase/downloads/index.html

2. Install the latest ECLIPSE for C/C++ developers using the following link:
http://www.eclipse.org/

3. Run the installed ECLIPSE and
* Create a project:
* Create a Makefile Project with Existing Code
* Choose Cross GCC
* Optional: Configure paths to build tool in Project Properties
* Configure a debugger (and remote system):
* Create a Debug Configuration of type C/C++ Remote Application
Use GDB/DSF Manual Remote Debugger Launcher
 Specify cross GDB in Debugger/Main tab (refer to step 4 in Building the Latest GDB for i.MX Processors)
» Specify a gdbinit file in Debugger/Main tab that contains: set sysroot <rootfs>
» Configure target IP and gdbserver port in Debugger/Connection tab
* Prepare the target for debugging and start debugging
* Run gdbserver on target
e Try start from entrypoint mode
* Try attach to process mode

The steps above (Configure a debugger (and remote system), Prepare the target for debugging and start debugging) are not
different from those used in Cross Mode to start debugging in cross mode, but this time the ECLIPSE UI has been instructed
to perform some of the steps. In addition to exploring the debugger front end features of ECLIPSE, you may also want to use
it as a powerful code editor, project manager, and more. Start by opening Project->Propertiesand configure both the cross
toolchain and how the project should be built. After that, try to make ECLIPSE connect with your version control system and
use its capabilities for performing remote repository operations.

Using Open Source Debugging Tools for Linux on i.MX Processors, Rev. 0, 7/2012

Freescale Semiconductor, Inc. 5
General Business Information

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.eclipse.org/

A
4

4
A

|
rirs: Steps for Using KGDB for Linux Kernel Debug

8 First Steps for Using KGDB for Linux Kernel Debug

Why is my kernel is stuck in early boot phase? Why is my NAND memory not correctly detected even though I made the
required kernel configuration? What is eventually going wrong in my loadable module? Those are the kinds of questions that
may lead to using a debugger. But first, take the easiest approach. Go into your Linux kernel Documentation folder and open
kernel-parameters.txt. This contains exhaustive documentation for generic parameters that can be provided to kernel at
startup. When you search for debug keyword, you will find that there are quite a few options. Ttry the most useful option for
your situation. For example:

initcall debug

Not enough? KGDB is a kernel feature designed for on-source debugging of the Linux kernel. It is introduced here because,
at this point, the reader should be familiar with the cross debugging concept and its particular GDB implementation. To make
it simpler, KGDB can be regarded as another GDB agent, which resides this time in the Linux kernel. It's documented at:

http://kernel.org/pub/linux/kernel/people/jwessel/kdb/.
The debug model is similar with what has already been described and so are the steps to be performed on the host machine.

As was the case with the previously discussed agent, there should be a connection between the target system and the host,
and this time we'll use the serial line (UART driver), feature known in KGDB as "over console" (kgdboc). The best thing to
do is to have a dedicated serial line for it, but it's still usable when there is a single serial line available on the target system,
also used as Linux console. The options are documented at the link above. The easiest (initial) test can be to disconnect the
terminal program (e.g. minicom) before connecting with gdb.

When using UART, the debugger works in polling mode so the kernel driver should implement two callbacks in
struct uart_ops:

.poll get char

.poll put_char

Those are located in drivers/tty/serial/imx.c file and have been contributed to the mainline kernel but may still not be in older
kernel sources. In this case, you can manually merge the implementation of those functions from the mainline kernel tree to
local source. Check the availability before going further.

Next, the kernel should be configured with kgdb support. Check the following in kernel configuration:
-> Kernel hacking
-> KGDB: kernel debugger (KGDB [=y])
-> KGDB: use kgdb over the serial console

Figure 1. Kernel Configuration with kgdb 1

If you want to debug the kernel during boot, select the last entry above to be compiled in kernel (*) and not as module (M).
Note that the latter also enables console poll.

-» General setup
-> Configure standard kernel features (expert users) (EXPERT [=y])
-> Load all symbols for debugging/ksymoops (KALLSYMS [=y])
-> Include all symbols in kallsyms
Figure 2. Kernel Configuration with kgdb 2

Using Open Source Debugging Tools for Linux on i.MX Processors, Rev. 0, 7/2012

6 Freescale Semiconductor, Inc.
General Business Information

http://kernel.org/pub/linux/kernel/people/jwessel/kdb/

First Steps for Using KGDB for Linux Kernel Debug

At run time, the kgdboc driver must be activated and instructed how to operate. It needs to know the serial line configuration
for communication with the host debugger and also if it must stop the kernel boot process and wait for a debugger connection
as soon as this driver is available. For that, there are two parameters to be provided from kernel command line:

kgdboc=<tty-device>, [baud] kgdbwait

While the meaning of the former is obvious, the latter is a kernel command line option that can be provided after the former
to instruct the kernel to wait for a debugger connection as soon as the I/O driver has been activated. This being said, let's try a
more practical approach for the following use cases such as debugging the kernel boot phase.

8.1 Debugging the Kernel Boot Phase

Add the following to kernel command line and start the boot process. Adjust the tty index according to your hardware (the
following is used on SabreLite board with one serial connection available):

kgdboc=ttymxcl, 115200 kgdbwait

Observe that the kernel boot process stopped with the following message:

kgdb: Registered I/O driver kgdboc.
kgdb: Waiting for connection from remote gdb...

(*) If you are using the same serial line for both console and debug, now is the time to disconnect the terminal application
(e.g. minicom).

Then, start the host debugger using the vmlinux elf from your Linux build as input file:

$ cd ltib/rpm/BUILD/linux

$ my built cross gdb vmlinux
(gdb) set remotebaud 115200
(gdb) target remote /dev/ttyUSBO

That will initiate a debug session of the Linux kernel. Use the GDB commands which you have previously learned to inspect
threads (mapped on Linux tasks), call stacks, variables, or to set/remove breakpoints. Note that, since the debugger works on
polling (not interrupt), the host debugger is not capable of stopping the kernel execution on user request. You can use step (n
command) or set breakpoints which, when hit, will stop the kernel and activate the debugger. There is a way to stop the
kernel on request, for debug, and it will be discussed in Debugging the Kernel After Boot. Sysrg-g.

8.2 Debugging the Kernel After Boot. Sysrq-g

To configure and enable the kgdb connection after boot, use the following command on target. It is necessary only when the
kernel did not receive the same configuration in its boot command line, as discussed above. A confirmation message will be
printed out:

$ echo "ttymxcl,115200" > /sys/module/kgdboc/parameters/kgdboc
kgdb: Registered I/O driver kgdboc.

At any time, you can inspect the content of this virtual filesystem entry to check the driver configuration. It can also be
disabled by writing an empty string into it:

$ echo > /sys/module/kgdboc/parameters/kgdboc
kgdb: Unregistered I/O driver kgdboc, debugger disabled.

After making sure that the feature is enabled, it's time to connect with the host debugger. As already discussed, when using
kgdboc there is no way the user can trigger an interrupt from host debugger in order to enter a debug session, so a sysrq-g
sequence should be initiated on target. It will be followed by a confirmation message:

Using Open Source Debugging Tools for Linux on i.MX Processors, Rev. 0, 7/2012

Freescale Semiconductor, Inc. 7
General Business Information

usimng ECLIPSE Front End for Linux Kernel Debug

$ echo g > /proc/sysrg-trigger
SysRg : DEBUG
Entering KGDB

Now the target waits for the host debugger to connect and the same steps from Debugging the kernel boot phase (*) should be
followed.

8.3 Debugging the Kernel Loadable Modules

While the kernel body resides at well known virtual addresses (same as the load addresses from the vmlinux elf file), a
loadable module (.ko) is just an archive, a collection of sections with no valid load address. The kernel loader allocates
memory and decides where to load each loadable section of such a module. This means that, before module load (modprobe,
insmod), we don't know where in the virtual memory it will stay, but we can find out immediately after the module load. The
file kernel/module.c is the loader. Looking into this file, observe that some features are guarded by CONFIG_KALLSYMS
definition. In order to export section load information to userspace, the kernel must be compiled with this macro enabled.
This has already been done in First Steps for Using KGDB for Linux Kernel Debug, so per-section load information is
available as follows:

/sys/module/<module-name>/sections/.<section-name>

non

Each file starting with the following characters: "." contains the virtual load address of a loadable section. Some of those are
data sections (e.g. for variables), others are code sections. At the very least, use the values for .text, .data, .rodata and .bss to
instruct the GDB debugger about the load addresses:

(gdb) add-symbol-file <filename.ko> <text section load address> [-s .<SECT>
<SECT_LOAD ADDRESS >]*

Example:

(gdb) add-symbol-file ~ltib/rootfs/lib/modules/3.0.15-1359-glb64ead/kernel/drivers/mxc/gpu-
viv/galcore.ko 0x7£000000 -s .data 0x7£01a250 -s .rodata 0x7f017b54 -s .bss 0x7f0la5bs
add symbol table from file "/home/agancev/mx6/ER5/minimal/ltib/rootfs/lib/modules/
3.0.15-1359-glb64ead/kernel/drivers/mx
c/gpu-viv/galcore.ko" at

.text addr 0x7£000000

.data_addr = 0x7£01a250

.rodata addr = 0x7£017b54

.bss_addr = 0x7f01a5b8

You should now be able to set breakpoints in the loadable module and debug it in the same session of a kernel debug.

Do you want to debug the module from its first function? It is more difficult, but not impossible. To do so, set a kernel
breakpoint in the file mentioned above kernel/module.c at the place where the kernel calls the module's init function
(do_one_initcall(mod->init)). At this point, all module sections have been loaded. Inspect kernel variables' values and try to
find the load address for .init.text section and provide it to the debugger in the add-symbol-file command. You should then be
able to set a breakpoint in the module's init function.

9 Using ECLIPSE Front End for Linux Kernel Debug

Similar to the process explained in Using ECLIPSE Front End for Linux User-Space Debug, an Eclipse project should be
created for the Linux kernel. It is recommended to create a Makefile Project with Existing Code. Likewise, the next step is
the configuration of a debugger (remote system), but this time we'll use the C/C++ GDB Hardware Debugging. This is not a
default feature of the Eclipse C/C++ and should be installed as follows in Eclipse:

* Help -> Install New Software...
* Work with: Indigo http://www.download.eclipse.org/releases/indigo
* Mobile and Device Development-> C/C++ GDB Hardware Debugging

Using Open Source Debugging Tools for Linux on i.MX Processors, Rev. 0, 7/2012

8 Freescale Semiconductor, Inc.
General Business Information

http://www.download.eclipse.org/releases/indigo

A\ ¥ 4
4\ Y
Conclusions

The configuration of the debugger should be made as follows:

* Create a Debug Configuration of type C/C++ GDB Hardware Debugging
* Select your Linux project and vmlinux C/C++ Application
* In Debugger tab:
 Specify the cross GDB command (refer to step 4 in Building the Latest GDB for i.MX Processors)
* Choose Generic Serial remote target and specify the host serial port in GDB Connection String edit box (e.g. /
dev/ttyUSBO)
 Select Using Standard GDB Hardware Debugging Launcher (at bottom of the page)
* In Startup tab, check ONLY Load Symbols from project vmlinux, leave others unchecked

Make the target wait for a remote connection (refer to Debugging the Kernel After Boot. Sysrg-g), disconnect the terminal
program if required and hit Debug button.

To manually enter GDB commands from Eclipse, in Console window use the push-down button named Display Selected
Console and choose the GDB console. Here you can type, for example, the add-symbol-file command for debugging a

loadable module. Do not forget to type this command every time you restart GDB, otherwise source mapping will not be
performed and the module will be debugged only on assembly code and its variables will not be available for inspection.

10 Conclusions

This document has provided a few ways to diagnose problems of software running on an embedded Linux system including
the operating system and its drivers. They are all basic, well known techniques, and while some require only the
configuration to enable comprehensive logging, others are more elaborate. There are many other debugging and logging
methods that have not been discussed here. Profiling and optimizing have also not been the subject of this document.
Regarding debugging techniques, one final observation is that open source and commercial tools use similar approaches for
debugging Linux applications and, for the Linux kernel, on chip debuggers (e.g. JTAG) are usually more powerful and
reliable.

Using Open Source Debugging Tools for Linux on i.MX Processors, Rev. 0, 7/2012

Freescale Semiconductor, Inc. 9
General Business Information

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road

Tempe, Arizona 85284

1-800-521-6274 or

+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 169 35 48 48 (French)
www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064

Japan

0120 191014 or

+81 35437 9125

support.japan @freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd.
Exchange Building 23F

No. 118 Jianguo Road

Chaoyang District

Beijing 100022

China

+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor
Literature Distribution Center

1-800 441-2447 or

+1-303-675-2140

Fax: +1-303-675-2150

LDCForFreescaleSemiconductor
@hibbertgroup.com

Document Number: AN4553
Rev. 0
07/2012

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale and the Freescale logo are trademarks of Freescale
Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service
names are the property of their respective owners. ARM is the registered
trademark of ARM Limited. ARM9 and ARM Cortex-A8 are the trademarks
of ARM Limited.

© 2012 Freescale Semiconductor, Inc.

@,

> freescale

B POWERED

ARM

	Introduction
	General Debug Models and Mapping on GDB
	Requirements
	Building the Latest GDB for i.MX Processors
	First Steps for Using GDB for Linux User-Space Debug
	Cross Mode
	Native Mode
	First GDB Commands

	Other Runtime Analysis Tools for Linux
	Using ECLIPSE Front End for Linux User-Space Debug
	First Steps for Using KGDB for Linux Kernel Debug
	Debugging the Kernel Boot Phase
	Debugging the Kernel After Boot. Sysrq-g
	Debugging the Kernel Loadable Modules

	Using ECLIPSE Front End for Linux Kernel Debug
	Conclusions

